Homological Decision Problems for Finitely Generated Groups with Solvable Word Problem

نویسندگان

  • William A. Bogley
  • Jens Harlander
چکیده

We show that for finitely generated groups G with solvable word problem, there is no algorithm to determine whether H1(G) is trivial, nor whether H2(G) is trivial.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Average-case complexity and decision problems in group theory

We investigate the average-case complexity of decision problems for finitely generated groups, in particular the word and membership problems. Using our recent results on “generic-case complexity” we show that if a finitely generated group G has word problem solvable in subexponential time and has a subgroup of finite index which possesses a non-elementary word-hyperbolic quotient group, then t...

متن کامل

Turing Degrees and the Word and Conjugacy Problems for Finitely Presented Groups

The unsolvability of the conjugacy problem for finitely presented groups was first shown by Novikov [26]. Shortly thereafter the corresponding result for the word problem was proved by Novikov [27] and Boone [6] (see also Boone [7], Higman [20] and Britton [9]). Friedberg [19] and Mucnik [25] revitalised the theory of recursively enumerable (r.e.) Turing degrees by showing that there are degree...

متن کامل

Homological Dehn Functions and the Word Problem

S. M. Gersten Abstract. Homological Dehn functions over R and over Z are introduced to measure minimal fillings of integral 1-cycles by (real or integral) 2-chains in the Cayley 2complex of a finitely presented group. If the group G is the fundamental group of a finite graph of finitely presented vertex-groups Hv and finitely generated edge-groups, then there is a formula for an isoperimetric f...

متن کامل

Descriptions of groups using formal language theory

Descriptions of Groups using Formal Language Theory Gabriela Aslı Rino Nesin This work treats word problems of finitely generated groups and variations thereof, such as word problems of pairs of groups and irreducible word problems of groups. These problems can be seen as formal languages on the generators of the group and as such they can be members of certain well-known language classes, such...

متن کامل

, 57 M 05 Average - Case Complexity and Decision Problems in Group Theory

We investigate the average-case complexity of decision problems for finitely generated groups, in particular the word and membership problems. Using our recent results on " generic-case complexity " we show that if a finitely generated group G has the word problem solv-able in subexponential time and has a subgroup of finite index which possesses a non-elementary word-hyperbolic quotient group,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJAC

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2002